A Frequency Support Approach for Hybrid Energy Systems Considering Energy Storage

Author:

Li Dahu1,Zhou Hongyu2,Chen Yuan3,Zhou Yue1,Rao Yuze1,Yao Wei2ORCID

Affiliation:

1. State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China

2. School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. China Hubei Emission Exchange, Wuhan 430070, China

Abstract

In hybrid energy systems, the intermittent and fluctuating nature of new energy sources poses major challenges for the regulation and control of power systems. To mitigate these challenges, energy storage devices have gained attention for their ability to rapidly charge and discharge. Collaborating with wind power (WP), energy storage (ES) can participate in the frequency control of regional power grids. This approach has garnered extensive interest from scholars worldwide. This paper proposes a two-region load frequency control model that accounts for thermal power, hydropower, ES, and WP. To address complex, nonlinear optimization problems, the dingo optimization algorithm (DOA) is employed to quickly obtain optimal power dispatching commands under different power disturbances. The DOA algorithm’s effectiveness is verified through the simulation of the two-region model. Furthermore, to further validate the proposed method’s optimization effect, the DOA algorithm’s optimization results are compared with those of the genetic algorithm (GA) and proportion method (PROP). Simulation results show that the optimization effect of DOA is more significant than the other methods.

Funder

Science and Technology Project of State Grid Hubei Electric Power Co., Ltd.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3