Electrostatic Separation of Copper and Glass Particles in Pretreated Automobile Shredder Residue

Author:

Kim Beom-Uk,Park Chul-Hyun

Abstract

There is increasing demand for an efficient technique for separating automobile shredder residue (ASR) obtained from end-of-life vehicles (ELVs). A particular challenge is the physical separation of conductive materials from glass. In this study, the performance of pretreatment and induction electrostatic separation process was evaluated. The results show that a sieving/washing (combination of sieving and washing) pretreatment was the most effective for removing conductive material compared to electrostatic separation alone. The optimum separation efficiency of copper products was achieved with an applied voltage of 20 kV, a relative humidity of less than 35%, and a splitter position of 8 cm. Although the separation efficiency was slightly reduced when some small glass particles remained attached to the conductive materials, the separation efficiency of copper from the pretreated ASR dramatically increased to 83.1% grade and 90.4% recovery, compared to that of raw ASR (34.3% grade and 58.6% recovery). Based on these results, it was demonstrated that the proposed sieving/washing pretreatment was proficient at removing conductive materials from glass; thus, it has the potential to significantly improve the efficiency of electrostatic separation for ASR.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference28 articles.

1. Automotive shredder residue (ASR) management: An overview

2. Act on resource circulation of electrical and electronic equipment and vehiclesttp://www.law.go.kr/lsInfoP.do?lsiSeq=188594&urlMode=engLsInfoR&viewCls=engLsInfoR#0000.

3. Directive 2000/53/EC of the european parliament and of the council of 18 September 2000 on end-of life vehicles;Parliament;Off. J. Eur. Communities,2000

4. End-of-life vehicle recycling and automobile shredder residue management in Japan

5. Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3