Abstract
The ferroelectric phase transition in RMnO3 breaks both Z3 and Z2 symmetries, giving rise to 6 structural domains. Topological protected vortices are formed at the junctions of all 6 domains, and the ferroelectric phase transition is closely related to these Z6 vortices. In this work, Monte-Carlo studies on both the ferroelectric and magnetic transition have been performed on RMnO3 system. The magnetic simulation results on lattices with different structural domain distributions induced by external electric field and simulated quenching show different magnetic transition temperature T s , indicating that the coupling of magnetism and ferroelectricity is through the Z6 structural domain. At extreme case, lattice quenched from above the ferroelectric transition results in high vortex density, which can drive the system into spin glass.
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献