Limiting Accuracy of Height Measurement for a Precision Radar Altimeter in a Low Altitude Flying Vehicle above the Sea Surface

Author:

Baskakov Aleksandr I.,Komarov Alexey A.ORCID,Ruban Anna V.,Ka Min-HoORCID

Abstract

This study presents mathematical analysis and numerical modeling for the estimation of measurement errors of height estimation over the sea surface for a precision radar altimeter installed in a low altitude flying vehicle. Reflective properties of the electromagnetic signals from the sea surface are determined by the local backscattering patterns of the sea surface illuminated. The height estimation of the flying vehicle from the received echo signals at the output of its tracking system is the sum of three factors: the first factor is the height to the average sea level the second is the bias of the estimation of the height, which is time-varying and depends on the slope of large-scale roughness; the third is the terms related to the surface topography. For the calculation of the estimation errors of the height measurement of a low altitude precision radar altimeter, a reasonable approximation of the large roughness of the sea surface by a deterministic function is necessary. In this study, we performed the derivation of the estimation function and the analysis of the limiting accuracy of the height measurement using the calculation of the estimation errors in spectral domain method describing the large-scale sea surface roughness. The results obtained for the limiting accuracy of a flying vehicle at low altitude above the sea surface, allows to obtain reasonable system parameters minimizing height errors of the flight altitude.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference21 articles.

1. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications;Fu,2001

2. Theoretical Fundamentals of Radio Altimetry;Zhukovsky,1979

3. Radar Remote Sensing of Objects and Environments Research;Baskakov,2011

4. Satellite altimetry using ocean backscatter

5. Simultaneous radiometric and radar altimetric measurements of sea microwave signatures

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3