Lessons Learned While Implementing a Time-Series Approach to Forest Canopy Disturbance Detection in Nepal

Author:

Aryal Raja RamORCID,Wespestad CrystalORCID,Kennedy Robert,Dilger JohnORCID,Dyson KarenORCID,Bullock Eric,Khanal Nishanta,Kono Marija,Poortinga Ate,Saah David,Tenneson KarisORCID

Abstract

While deforestation has traditionally been the focus for forest canopy disturbance detection, forest degradation must not be overlooked. Both deforestation and forest degradation influence carbon loss and greenhouse gas emissions and thus must be included in activity data reporting estimates, such as for the Reduced Emissions from Deforestation and Degradation (REDD+) program. Here, we report on efforts to develop forest degradation mapping capacity in Nepal based on a pilot project in the country’s Terai region, an ecologically complex physiographic area. To strengthen Nepal’s estimates of deforestation and forest degradation, we applied the Continuous Degradation Detection (CODED) algorithm, which uses a time series of the Normalized Degradation Fraction Index (NDFI) to monitor forest canopy disturbances. CODED can detect low-grade degradation events and provides an easy-to-use graphical user interface in Google Earth Engine (GEE). Using an iterative process, we were able to create a model that provided acceptable accuracy and area estimates of forest degradation and deforestation in Terai that can be applied to the whole country. We found that between 2010 and 2020, the area affected by disturbance was substantially larger than the deforested area, over 105,650 hectares compared to 2753 hectares, respectively. Iterating across multiple parameters using the CODED algorithm in the Terai region has provided a wealth of insights not only for detecting forest degradation and deforestation in Nepal in support of activity data estimation but also for the process of using tools like CODED in applied settings. We found that model performance, measured using producer’s and user’s accuracy, varied dramatically based on the model parameters specified. We determined which parameters most altered the results through an iterative process; those parameters are described here in depth. Once CODED is combined with the description of each parameter and how it affects disturbance monitoring in a complex environment, this degradation-sensitive detection process has the potential to be highly attractive to other developing countries in the REDD+ program seeking to accurately monitor their forests.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Measuring and Monitoring Forest Degradation for REDD Implications of Country Circumstances;Murdiyarso;Cent. Int. For. Res.,2008

2. Integrating Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative,2016

3. Terms and Definition,2015

4. Bringing an ecological view of change to Landsat-based remote sensing

5. Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen Rain Forests: A Test Case in Continental Southeast Asia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3