Workflow for Off-Site Bridge Inspection Using Automatic Damage Detection-Case Study of the Pahtajokk Bridge

Author:

Mirzazade AliORCID,Popescu CosminORCID,Blanksvärd Thomas,Täljsten Björn

Abstract

For the inspection of structures, particularly bridges, it is becoming common to replace humans with autonomous systems that use unmanned aerial vehicles (UAV). In this paper, a framework for autonomous bridge inspection using a UAV is proposed with a four-step workflow: (a) data acquisition with an efficient UAV flight path, (b) computer vision comprising training, testing and validation of convolutional neural networks (ConvNets), (c) point cloud generation using intelligent hierarchical dense structure from motion (DSfM), and (d) damage quantification. This workflow starts with planning the most efficient flight path that allows for capturing of the minimum number of images required to achieve the maximum accuracy for the desired defect size, then followed by bridge and damage recognition. Three types of autonomous detection are used: masking the background of the images, detecting areas of potential damage, and pixel-wise damage segmentation. Detection of bridge components by masking extraneous parts of the image, such as vegetation, sky, roads or rivers, can improve the 3D reconstruction in the feature detection and matching stages. In addition, detecting damaged areas involves the UAV capturing close-range images of these critical regions, and damage segmentation facilitates damage quantification using 2D images. By application of DSfM, a denser and more accurate point cloud can be generated for these detected areas, and aligned to the overall point cloud to create a digital model of the bridge. Then, this generated point cloud is evaluated in terms of outlier noise, and surface deviation. Finally, damage that has been detected is quantified and verified, based on the point cloud generated using the Terrestrial Laser Scanning (TLS) method. The results indicate this workflow for autonomous bridge inspection has potential.

Funder

Svenska Forskningsrådet Formas

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3