Direction-of-Arrival Estimation over Sea Surface from Radar Scattering Based on Convolutional Neural Network

Author:

Zhao Xiuyi,Yang Ying,Chen Kun-ShanORCID

Abstract

Conventional direction-of-arrival (DOA) estimation methods are primarily used in point source scenarios and based on array signal processing. However, due to the local scattering caused by sea surface, signals observed from radar antenna cannot be regarded as a point source but rather as a spatially dispersed source. Besides, with the advantages of flexibility and comparably low cost, synthetic aperture radar (SAR) is the present and future trend of space-based systems. This paper proposes a novel DOA estimation approach for SAR systems using the simulated radar measurement of the sea surface at different operating frequencies and wind speeds. This article’s forward model is an advanced integral equation model (AIEM) to calculate the electromagnetic scattered from the sea surface. To solve the DOA estimation problem, we introduce a convolutional neural network (CNN) framework to estimate the transmitter’s incident angle and incident azimuth angle. Results demonstrate that the CNN can achieve a good performance in DOA estimation at a wide range of frequencies and sea wind speeds.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. Smoothing Periodograms from Time-Series with Continuous Spectra

2. High-Resolution Frequency-Wavenumber Spectrum Analysis;Capon,1969

3. DATA ADAPTIVE SPECTRAL ANALYSIS METHODS

4. Estimating the Angles of Arrival of Multiple Plane Waves;Kumaresan;IEEE Trans. Aerosp. Electron. Syst.,1983

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3