Estimation of Hail Damage Using Crop Models and Remote Sensing

Author:

Gobbo StefanoORCID,Ghiraldini Alessandro,Dramis Andrea,Dal Ferro NicolaORCID,Morari FrancescoORCID

Abstract

Insurance agents often provide crop hail damage estimates based on their personal experience and field samples, which are not always representative of the investigated field’s spatial variability. For these reasons, farmers and the insurance market ask for a reliable, objective, and less labor-intensive method to determine crop hail losses. Integrating remote sensing and crop modeling provides a unique opportunity for the crop insurance market for a reliable, objective, and less labor-intensive method to estimate hail damage. To this end, a study was conducted on eight distinct maize fields for a total of 90 hectares. Five fields were damaged by the hailstorm that occurred on 13 July 2019 and three were not damaged. Soil and plant samples were collected to characterize the experimental areas. The Surface Energy Balance Algorithm for Land (SEBAL) was deployed to determine the total aboveground biomass and obtainable yield at harvest, using Landsat 7 and 8 satellite images. Modeled hail damages (HDDSSAT1, coupling SEBAL estimates of obtainable yield and DSSAT-based potential yield; HDDSSAT2, coupling yield map at harvest and the Decision Support System for Agrotechnology Transfer (DSSAT)-based potential yield) were calculated and compared to the estimates of the insurance company (HDinsurance). SEBAL-based biomass and yield estimates agreed with in-season measurements (−4% and +0.5%, respectively). While some under and overestimations were observed, HDinsurance and HDDSSAT1 averaged similar values (−4.9% and +3.4%) compared to the reference approach (HDDSSAT2).

Funder

Cattolica Assicurazioni

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3