Deep Learning for Automated Detection and Identification of Migrating American Eel Anguilla rostrata from Imaging Sonar Data

Author:

Zang Xiaoqin,Yin Tianzhixi,Hou ZhangshuanORCID,Mueller Robert P.ORCID,Deng Zhiqun Daniel,Jacobson Paul T.ORCID

Abstract

Adult American eels (Anguilla rostrata) are vulnerable to hydropower turbine mortality during outmigration from growth habitat in inland waters to the ocean where they spawn. Imaging sonar is a reliable and proven technology for monitoring of fish passage and migration; however, there is no efficient automated method for eel detection. We designed a deep learning model for automated detection of adult American eels from sonar data. The method employs convolution neural network (CNN) to distinguish between 14 images of eels and non-eel objects. Prior to image classification with CNN, background subtraction and wavelet denoising were applied to enhance sonar images. The CNN model was first trained and tested on data obtained from a laboratory experiment, which yielded overall accuracies of >98% for image-based classification. Then, the model was trained and tested on field data that were obtained near the Iroquois Dam located on the St. Lawrence River; the accuracy achieved was commensurate with that of human experts.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Update of the American Eel Stock Assessment Report,2006

2. Recovery Strategy for the American Eel (Anguilla rostrata) in Ontario;MacGregor,2013

3. American eel Benchmark Stock Assessment,2012

4. Anguilla rostrata: Jacoby, D., Casselman, J., DeLucia, M. & Gollock, M.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3