Water Mixing Conditions Influence Sentinel-2 Monitoring of Chlorophyll Content in Monomictic Lakes

Author:

Perrone MichelaORCID,Scalici Massimiliano,Conti Luisa,Moravec David,Kropáček Jan,Sighicelli MariaORCID,Lecce Francesca,Malavasi MarcoORCID

Abstract

Prompt estimation of phytoplankton biomass is critical in determining the ecological quality of freshwaters. Remote Sensing (RS) may provide new opportunities to integrate with situ traditional monitoring techniques. Nonetheless, wide regional and temporal variability in freshwater optical constituents makes it difficult to design universally applicable RS protocols. Here, we assessed the potential of two neural networks-based models, namely the Case 2 Regional CoastColour (C2RCC) processor and the Mixture Density Network (MDN), applied to MSI Sentinel-2 data for monitoring Chlorophyll (Chl) content in three monomictic volcanic lakes while accounting for the effect of their specific water circulation pattern on the remotely-sensed and in situ data relation. Linear mixed models were used to test the relationship between the remote sensing indices calculated through C2RCC (INN) and MDN (IMDN), and in situ Chl concentration. Both indices proved to explain a large portion of the variability in the field data and exhibited a positive and significant relationship between Chl concentration and satellite data, but only during the mixing phase. The significant effect of the water circulation period can be explained by the low responsiveness of the RS approaches applied here to the low phytoplankton biomass, typical of the stratification phase. Sentinel-2 data proved their valuable potential for the remote sensing of phytoplankton in small inland water bodies, otherwise challenging with previous sensors. However, caution should be taken, since the applicability of such an approach on certain water bodies may depend on hydrological and ecological parameters (e.g., thermal stratification and seasonal nutrient availability) potentially altering RS chlorophyll detection by neural networks-based models, despite their alleged global validity.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3