Abstract
In this study, four different coal fly ashes (CFAs) were used as raw materials of silica and alumina for the preparation of the alumina-containing Mobil Composition of Matter No. 41 (Al-MCM-41) and the exploration of an activation strategy that is efficient and universal for various CFAs. Alkaline hydrothermal and alkaline fusion activations proceeded at different temperatures to determine the best treatment parameters. We controlled the pore structure and surface hydroxyl density of the CFA-derived Al-MCM-41 by changing the crystallization temperature and aging time. The products were characterized by small-angle X-ray diffraction, nitrogen isotherms, Fourier-transform infrared spectroscopy, 29Si silica magic-angle spinning nuclear magnetic resonance, and transmission electron microscopy, and they were then grafted with thiol groups to remove Pb(II) from aqueous solutions. This paper innovatively evaluates the CFA activation strategies using energy consumption analysis and determines the optimal activation methodology and parameters. This paper also unveils the effect of the crystallization condition of Al-MCM-41 on its subsequent Pb(II) removal capacity. The results show that the appropriate selection of crystallization parameters can considerably increase the removal capacity over Pb(II), providing a new path to tackle the ever-increasing concern of aquic heavy-metal pollution.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献