Toxicity of Jegosaponins A and B from Styrax japonica Siebold et al. Zuccarini in Prostate Cancer Cells and Zebrafish Embryos Resulting from Increased Membrane Permeability

Author:

Nishimura Moe,Fuchino HiroyukiORCID,Takayanagi Kaoru,Kawakami Hitomi,Nakayama HirokoORCID,Kawahara NobuoORCID,Shimada YasuhitoORCID

Abstract

(1) Background: Screening of medicinal herbs is one of the most powerful approaches to identifying novel therapeutic molecules against many human diseases. To avoid potential harmful effects during medicinal use, toxicity testing is necessary in the early stages of drug discovery. The objective of this study was to identify the cytotoxic mechanisms of jegosaponin A and B from Styrax japonica Siebold et al. Zuccarini; (2) Methods: We screened Japanese medicinal herb extracts using PC-3 prostate cancer cells and found that a methanol extract isolated from the unripe fruit of Styrax japonica Siebold et al. Zuccarini (SJSZ) had an inhibitory effect on cell viability. We further performed fractionation assays with PC-3 cells and identified the bioactive compounds using LC/MS and NMR analysis. We clarified the toxic mechanisms of these compounds using PC-3 cells and zebrafish embryos; (3) Results: We identified two active molecules, jegosaponin A and jegosaponin B, in the inhibitory fractions of the methanol extract. These jegosaponins are toxic to zebrafish embryos during the early developmental stage. Jegosaponin A and B showed strong haemolytic activity in sheep defibrinated blood (EC50 = 2.1 μM, and 20.2 μM, respectively) and increased the cell membrane permeability in PC-3 cells and zebrafish embryos, which were identified using a membrane non-permeable DRAQ7, a fluorescent nucleus staining dye; (4) We identified the cytotoxic compounds jegosaponin A and B from SJSZ, which we showed to exhibit cell membrane disruptive properties using cell- and zebrafish-based testing.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3