Abstract
Proteases are a group of enzymes with a catalytic function to hydrolyze peptide bonds of proteins. Proteases regulate the activity, signaling mechanism, fate, and localization of many proteins, and their dysregulation is associated with various pathological conditions. Proteases have been identified as biomarkers and potential therapeutic targets for multiple diseases, such as acquired immunodeficiency syndrome, cardiovascular diseases, osteoporosis, type 2 diabetes, and cancer, where they are essential to disease progression. Thus, protease inhibitors and inhibitor-like molecules are interesting drug candidates. To study proteases and their substrates and inhibitors, simple, rapid, and sensitive protease activity assays are needed. Existing fluorescence-based assays enable protease monitoring in a high-throughput compatible microtiter plate format, but the methods often rely on either molecular labeling or synthetic protease targets that only mimic the hydrolysis site of the true target proteins. Here, we present a homogenous, label-free, and time-resolved luminescence utilizing the protein-probe method to assay proteases with native and denatured substrates at nanomolar sensitivity. The developed protein-probe method is not restricted to any single protein or protein target class, enabling digestion and substrate fragmentation studies with the natural unmodified substrate proteins. The versatility of the assay for studying protease targets was shown by monitoring the digestion of a substrate panel with different proteases. These results indicate that the protein-probe method not only monitors the protease activity and inhibition, but also studies the substrate specificity of individual proteases.
Funder
Academy of Finland
Instrumentariumin Tiedesäätiö
Emil Aaltosen Säätiö
The Finnish Concordia Fund
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献