Abstract
Promoting fluid transportation in porous media has important applications in energy, pedology, bioscience, etc. For this purpose, one effective way is to prevent swelling through surface modification; however, it is far from enough in real cases, such as ultra-low permeability reservoirs and tight oils. In this study, we considered the comprehensive effects of inhibiting clay swelling, flocculation performance, reducing water clusters and interfacial tension and developed a series of imidazole-based tetrafluoroborate ionic liquids (ILs) with different lengths of alkyl chains. Through measurements of anti-swelling rates, XRD, SEM, 17O NMR, molecular dynamics simulation, zeta potential, flocculation evaluation, interfacial tension and a core flooding experiment based on ultra-low permeability reservoirs, the relationships between the molecular structure and physicochemical properties of ILs have been revealed. Interestingly, one of the selected ILs, imidazole-based tetrafluoroborate ILs (C8-OMImBF4), shows excellent performance, which is helpful to design an effective strategy in promoting fluid transportation in narrow spaces.
Funder
National Natural Science Foundation of China
PetroChina Innovation Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献