Abstract
Doxorubicin (DOX) is a widely used anticancer drug. However, its clinical use is severely limited due to drug-induced cumulative cardiotoxicity, which leads to progressive cardiomyocyte dysfunction and heart failure. Enormous efforts have been made to identify potential strategies to alleviate DOX-induced cardiotoxicity; however, to date, no universal and highly effective therapy has been introduced. Here we reported that cinnamic acid (CA) derivatives exert a multitarget protective effect against DOX-induced cardiotoxicity. The experiments were performed on rat cardiomyocytes (H9c2) and human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) as a well-established model for cardiac toxicity assessment. CA derivatives protected cardiomyocytes by ameliorating DOX-induced oxidative stress and viability reduction. Our data indicated that they attenuated the chemotherapeutic’s toxicity by downregulating levels of caspase-3 and -7. Pre-incubation of cardiomyocytes with CA derivatives prevented DOX-induced motility inhibition in a wound-healing assay and limited cytoskeleton rearrangement. Detailed safety analyses—including hepatotoxicity, mutagenic potential, and interaction with the hERG channel—were performed for the most promising compounds. We concluded that CA derivatives show a multidirectional protective effect against DOX-induced cardiotoxicity. The results should encourage further research to elucidate the exact molecular mechanism of the compounds’ activity. The lead structure of the analyzed CA derivatives may serve as a starting point for the development of novel therapeutics to support patients undergoing DOX therapy.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献