Novel TTLL5 Variants Associated with Cone-Rod Dystrophy and Early-Onset Severe Retinal Dystrophy

Author:

Smirnov Vasily,Grunewald OlivierORCID,Muller JeanORCID,Zeitz ChristinaORCID,Obermaier Carolin D.,Devos AuroreORCID,Pelletier Valérie,Bocquet BéatriceORCID,Andrieu Camille,Bacquet Jean-Louis,Lebredonchel ElodieORCID,Mohand-Saïd Saddek,Defoort-Dhellemmes Sabine,Sahel José-Alain,Dollfus Hélène,Zanlonghi Xavier,Audo IsabelleORCID,Meunier Isabelle,Boulanger-Scemama Elise,Dhaenens Claire-Marie

Abstract

Variants of the TTLL5 gene, which encodes tubulin tyrosine ligase-like family member five, are a rare cause of cone dystrophy (COD) or cone-rod dystrophy (CORD). To date, only a few TTLL5 patients have been clinically and genetically described. In this study, we report five patients harbouring biallelic variants of TTLL5. Four adult patients presented either COD or CORD with onset in the late teenage years. The youngest patient had a phenotype of early onset severe retinal dystrophy (EOSRD). Genetic analysis was performed by targeted next generation sequencing of gene panels and assessment of copy number variants (CNV). We identified eight variants, of which six were novel, including two large multiexon deletions in patients with COD or CORD, while the EOSRD patient harboured the novel homozygous p.(Trp640*) variant and three distinct USH2A variants, which might explain the observed rod involvement. Our study highlights the role of TTLL5 in COD/CORD and the importance of large deletions. These findings suggest that COD or CORD patients lacking variants in known genes may harbour CNVs to be discovered in TTLL5, previously undetected by classical sequencing methods. In addition, variable phenotypes in TTLL5-associated patients might be due to the presence of additional gene defects.

Funder

Retina France

Fondation Fighting Blindness

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3