Abstract
Microfluidics is applied in biotechnology research via the creation of microfluidic channels and reaction vessels. Filters are considered to be able to simulate microfluidics. A typical example is the cell culture insert, which comprises two vessels connected by a filter. Cell culture inserts have been used for years to study cell-to-cell communication. These systems generally have a bucket-in-bucket structure and are hereafter referred to as a vertical-type co-culture plate (VTCP). However, VTCPs have several disadvantages, such as the inability to simultaneously observe samples in both containers and the inability of cell-to-cell communication through the filters at high cell densities. In this study, we developed a novel horizontal-type co-culture plate (HTCP) to overcome these disadvantages and confirm its performance. In addition, we clarified the migration characteristics of substances secreted from cells in horizontal co-culture vessels. It is generally assumed that less material is exchanged between the horizontal vessels. However, the extracellular vesicle (EV) transfer was found to be twice as high when using HTCP. Other merits include control of the degree of co-culture via the placement of cells. We believe that this novel HTCP container will facilitate research on cell-to-cell communication in various fields.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献