Abstract
Additive manufacturing is a promising and emerging technology that can transform the global manufacturing and logistics by cutting costs and times of production. Localized corrosion resistance properties of 0°, 45°, and 90° build-up orientations of 17-4 PH as-sintered samples, manufactured by means of Bound Metal Deposition (BMD), have been investigated by electrochemical and morphological investigations. The cyclic potentiodynamic polarization curves and the open circuit potential monitoring, together with potential drop analysis, revealed that the BMD localized corrosion resistance properties were lowered if compared to a wrought 17-4 PH: a characteristic anodic behavior and many drops in potential were recorded for BMD, whilst the wrought specimens presented a typical passive behavior with pitting corrosion. Morphological investigations by scanning electron microscopy and energy-dispersive X-ray analysis revealed the presence of porosities and defects, especially for the 90° build-up orientation, and inclusions of SiO2. The 45° build-up orientation showed the best corrosion resistance properties among all the BMD specimens, even though defects and porosities were observed, suggesting that their morphology and geometry influenced the overall corrosion behavior.
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献