Effect of Cr and Al on Elastic Constants of FeCrAl Alloys Investigated by Molecular Dynamics Method

Author:

Dai HuiORCID,Yu Miaosen,Dong YibinORCID,Setyawan Wahyu,Gao NingORCID,Wang XuelinORCID

Abstract

The FeCrAl alloy system is recognized as one of the candidate materials for accident-tolerant fuel (ATF) cladding in the nuclear power industry due to its high oxidation resistance under irradiation and high-temperature environments. The concentrations of Cr and Al have a significant effect on elastic properties of the FeCrAl alloy. In this work, elastic constants C11, C12, C44, bulk modulus and shear modulus of FeCrAl alloy were calculated with molecular dynamics methods. We explored compositions with 1–15 wt.% Cr and 1–5 wt.% Al at temperatures from 0 K to 750 K. The results show that the concentrations of Al and Cr have different effects on the elastic constants. When the concentration of Al was fixed, a decrease in bulk modulus and shear modulus with increasing Cr content was observed, consistent with previous experimental results. The dependence of elastic constants on temperature was also the same as in the experiments. Investigations into elastic properties of defect-containing alloys have shown that vacancies, voids, interstitials and Cr-rich precipitations have different effects on elastic properties of FeCrAl alloys. Investigations of elastic properties of defect-containing alloys have shown that vacancies, void, interstitials and Cr-rich precipitations have different effects on elastic properties of FeCrAl alloys. Therefore, the present results indicate that both the Cr and Al concentrations and radiation defects should be considered to develop and apply the FeCrAl alloy in ATF design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3