Investigation of Through-Thickness Residual Stress, Microstructure and Texture in Radial Forged High-Strength Alloy Steel Tubes

Author:

Xu Weisheng,Zhang Jin

Abstract

Gradient variations of through-thickness residual stress, microstructure and texture greatly affect the performance of cold radial forged tubes. In this work, the through-thickness distribution of residual stress was measured based on the Debye ring. The microstructure was characterized with the electron backscattering diffraction technique. The texture was measured by the X-ray diffractometer. The influence of microstructure and texture on the strength and anisotropy of forged tubes with different thickness reductions was analyzed. The results show that the residual stress varies gradually from compressive to tensile from the outer to inner surface. The microhardness of the outer surface is lower than the inner. The dislocation density and low-angle grain boundary fraction are the smallest in the one-third thickness. The dislocation density and low-angle grain boundary fraction increase gradually from the one-third thickness to the inner surface. The main texture components of the forged tube include {111}<110>, {001}<110> and {114}<110>. Texture {111}<110> deflects gradually toward {114}<110>, {112}<110> and {110}<110> from the external tube to the internal tube. The gradient variation of strength mainly resulted from the difference of the dislocation density. The difference of strength along the radial direction is reduced with a larger thickness reduction. This work has important significance for improving the performance of high-strength alloy steel tubes processed by cold radial forging.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3