Experimental Investigations of Expansion Strength of Hydraulic Expansion Joints Interconnecting Tube and Fins Heat Exchanger

Author:

Han Haimei,Yang Lianfa,Jiang Jingyu,Ma Jianping

Abstract

As a high expansion strength corresponds to a high heat transfer efficiency, this study investigated the expansion strength of an air-conditioning heat exchanger jointed by hydraulic expansion. A device that would be reliable and adaptable to different types of tubes and fins was designed and developed for testing hydraulic expansion. The device was used to perform a non-pulsating hydraulic expansion experiment on samples comprising tubes and fins to determine the hydraulic pressure range. The expansion strength was tested by performing tensile tests to evaluate the pull-out force at different bulging zones of the same sample with the selected hydraulic pressure. A series of pulsating hydraulic expansion experiments were performed on the joints of tubes and fins with different pulsating amplitudes and frequencies. Tensile tests were performed on the pulsating hydraulic expansion samples to study the influence of the pulsation parameters on the pull-out force. When the amplitude was fixed, an increase in frequency led to uniform expansion in the exchanger. This indicates that joint expansion in tubes and fins results in a more reliable heat exchanger performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3