Abstract
The gas utilization rate (GUR) is an important indicator parameter for reflecting the energy consumption and smooth operation of a blast furnace (BF). In this study, the original data of a BF are pre-processed by two methods, i.e., box plot and 3σ criterion, and two data sets are obtained. Then, support vector regression (SVR) is used to construct a prediction model based on the two data sets, respectively. The state parameters of a BF are selected as input parameters of the model. Gas utilization after one hour (GUR-1h), two hours (GUR-2h), and three hours (GUR-3h) are selected as output parameters, respectively. The simulation result demonstrates that using the 3σ criterion to pre-process the raw data leads to better prediction of the model compared to using the box plot. Moreover, the model has the best predictive effect when the output parameter is selected as GUR-1h.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献