Thermal-Structural Characteristics of Multi-Layer Vacuum-Insulated Pipe for the Transfer of Cryogenic Liquid Hydrogen

Author:

Kim Jeong HwanORCID,Park Dae Kyeom,Kim Tae Jin,Seo Jung Kwan

Abstract

As the world’s hydrocarbon supplies are gradually being depleted, the search for alternative energy sources with acceptably low emissions of environmentally harmful pollutants is a growing concern. Hydrogen has been proposed by numerous researchers as a fuel source for ships. Liquid hydrogen (LH2) has been shown to be particularly attractive as a ship fuel with respect to its ability to reduce pollution, density, high performance in engines, and high caloric value per unit mass. However, working with hydrogen in the liquid phase requires very low (i.e., cryogenic) temperatures. The design of a cryogenic LH2 pipeline is very different from the design of a normal fluid pipe due to the change between the liquid and gas states involved and the effect of thermal and structural characteristics on the cryogenic temperature during LH2 transportation through the transfer pipeline. This study investigated the material and thermal-structural characteristics of a multi-layer vacuum-insulated pipeline system through experiments and finite element analysis. The experimental and numerical results can be used as a database of material parameters for thermal-structural analysis when designing applications such as LH2 pipeline systems for hydrogen carriers and hydrogen-fuelled ships.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3