Abstract
With the increasing awareness of sustainable mining, the cement tailings backfill (CTB) method has been developed rapidly over the past decades. In the CTB technique, the two main mechanical properties engineers were concerned with are the rheological properties of CTB slurry and the resulting CTB strength after curing. Particle size distribution (PSD) of tailings material or PSD of the slurry is a significant factor that highly influences the rheological of CTB slurry and the strength performance of CTB. However, the concentrically partial size distribution curve and existing mathematical model could not represent the PSD of tailings material. In this study, a mathematical model for the particle size distribution of mine tailings was established using three model coefficients A B and K, which mainly reflect the characteristics of particles from three aspects respectively, the average size of particles, the proportion of the coarse or the fine parts of particles, and the distribution width of particles; meanwhile, an optimal coefficient solution method based on error analysis is given. Twelve tailing materials sourced from metal mines around China were used for the model establishment and validation. The determination coefficient of error analysis (R2) for all twelve modeled PSD lognormal curves was more significant than 0.99, and the modeled PSD lognormal curves are highly consistent with the determined particle size distribution curve.
Funder
the National Key R&D Program of China
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献