New Equipment and Method for Refining the Solidified Grain Structure

Author:

Rónaföldi Arnold,Veres Zsolt,Svéda MáriaORCID,Roósz András

Abstract

The mechanical properties of solidified alloys strongly depend on the grain size. In many practical cases at the given solidification parameters (temperature gradient and solid/liquid interface velocity), the solidified microstructure is columnar, meaning that the mechanical properties differ depending on the direction, which results in the material being unsuitable for application. The microstructure can be changed from columnar to equiaxed through the inclusion of grain refinement material. This strategy is well known in the literature as the columnar/equiaxed transition (CET). In some cases, it is beneficial if the CET can be produced without using grain refinement material; for example, it may detrimentally affect the mechanical properties (such as when the Al alloy ingot is used in pressing). The stirring of the melt as an alternative for the use of grain refinement material could solve this problem as intensive melt flow can break some particles from growing dendrites. This paper demonstrates a new type of traveling magnetic field inductor that is used to produce strong shearing stress in the flow perpendicular to the solidification front by causing part of the metallic melt layers touching each other to flow in an opposite direction. Through some examples, we demonstrate the effect of stirring by the new inductor on the solidified grain structure.

Funder

National Research Development and Investigation Office (Hungary

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3