Abstract
In this work, the selective laser melting (SLM) 60NiTi alloy was successfully fabricated. Through designing an orthogonal experiment of parameters optimization including laser power (P) and scanning speed (v), the optimal parameters window with both high forming quality and appropriate composition proportion was established. The SLM 60NiTi can exhibit high relative density (>98%) and low Ni loss (<0.2 at.%) at the parameter window of P = 80–90 W, v = 300–350 mm/s, and energy density of 145–155 J/mm3. The optimally-selected SLM 60NiTi exhibits a high compression strength of 2.2 GPa and large reversible strain of 7% due to the reversible stress-induced martensitic transformation of the NiTi phase and the large elastic strain of the Ni4Ti3 phase. It also exhibits superior wear resistance to conventional casting solution treated 60NiTi because the NiTi phase formed in an SLM repeated thermal cycle possesses a lower solution Ni atom and thus lower critical stress for martensitic transformation, and is more prone to undergo martensitic transformation upon friction and wear.
Funder
Joint fund of the National Natural Science Foundation Committee of China Academy of Engineering Physics
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献