Tribological Wear Effects of Laser Texture Design on AISI 630 Stainless Steel under Lubricated Conditions

Author:

Salguero JorgeORCID,Sol Irene DelORCID,Dominguez GuzmanORCID,Batista MoisesORCID,Vazquez-Martinez Juan ManuelORCID

Abstract

Surface texturing is used in many applications to control the friction and wear behaviour of mechanical components. The benefits of texture design on the tribological behaviour of conformal surfaces are well known. However, there is a big dependency between the geometrical features of the texture and the texture’s performance. In this paper, the effect of laser texturing parameters on textured geometrical features is studied, as well as its role in the tribological behaviour of AISI 630 steel under lubrication and high-contact pressure conditions. The results show a linear impact of the energy density on the surface quality, whereas the scanning speed influences the homogeneity of the sample. Nevertheless, the surface integrity is also affected by the laser parameters, reducing the micro-hardness on the textured area by up to 33%. Friction coefficient average values and stability presented high variations depending on the sample parameters. Finally, the wear mechanisms were analysed, detecting abrasion for the disc and adhesion for the pin.

Funder

Spanish National Research Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference58 articles.

1. Industrial Tribology;Mang,2010

2. 3-Friction;Hutchings,2017

3. Engineering Tribology;Stachowiak,2005

4. The Friction and Lubrication of Solids;Bowden,1964

5. A Dislocation-Based Analytical Model for the Nanoscale Processes of Shear and Plowing Friction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3