Fatigue Behavior of Alloy Steels Sintered from Pre-Alloyed and Diffusion-Bonding Alloyed Powders

Author:

Tan Zhaoqiang,Liu Yong,Huang Xiaolin,Li SonglinORCID

Abstract

Porosity and phases are considered to be two key factors for the fatigue performance of powder metallurgy steels. In this paper, the fatigue strengths of the alloy steels sintered from two typical types of powders, pre-alloyed Fe-Cr-Mo (Astaloy CrM), and diffusion-bonding alloyed Fe-Cu-Mo-Ni (Distaloy AE), were comparatively analyzed in view of the geometry of porosity, the phases constitution, and fractography of fracture. Different modes of fatigue fracture were distinguished between the two materials. Namely, a trans-particle fracture is predominant in the Disitaloy AE steel due to the heterogeneous phases which consist of soft phases in powder interior and hard phases along powder borders. In contrast, the fatigue fracture of the Astaloy CrM steel with a homogeneous mono-phase of martensite is characterized by an inter-particle fracture at the sintering necks. Moreover, the fatigue endurance limit of the Distaloy AE steel was not pronouncedly improved by increasing sintering temperature in comparison with the Astaloy CrM steel. This was attributed to the softening of the network constructed by martensite at sintering necks. A modified Murakami model which considers micro-scale defect and micro-hardness is effective to predict the fatigue performance of the alloy steels sintered from pre-alloyed and diffusion-bonding alloyed powders, respectively.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference34 articles.

1. Powder Metallurgy Science;German,1984

2. Fatigue crack initiation and propagation of binder-treated powder metallurgy steels

3. Fatigue crack path in Cu-Ni-Mo alloyed PM steel

4. Effect of Young’s modulus on fatigue crack growth

5. Microstructural features limiting the performance of P/M steels;Danninger;Int. J. Powder Metall.,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3