Impurity Combination Effect on Oxygen Absorption in α2-Ti3Al

Author:

Bakulin Alexander V.ORCID,Chumakova Lora S.,Kasparyan Sergey O.ORCID,Kulkova Svetlana E.

Abstract

The effect of substitutional impurities of the transition metals of VB–VIIB groups on the oxygen absorption in the doped α2-Ti3Al alloy was studied by the projector-augmented wave method within the density functional theory. It is established that all considered impurities prefer to substitute for a Ti atom rather than an Al atom. Changes in the absorption energy due to impurities being in the first neighbors of the oxygen atom were estimated. It was demonstrated that the doping resulted in a decrease in the oxygen absorption energy, which is mainly caused by the chemical contribution to it. The interaction energy between impurity atoms was calculated in the dependence on the interatomic distance. It was shown that the configuration with the impurity atoms being in the second neighbors of each other was stable in comparison with other possible configurations. The influence of two impurity atoms being in the first neighbors of oxygen is additively enhanced. It was revealed that the effect of two impurity atoms on the oxygen absorption energy can be estimated as the sum of the effects of separate impurities with an accuracy of more than ~90%.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oxygen absorption in doped Ti-Al alloys;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3