Effect of Stand Density on Soil Organic Carbon Storage and Extracellular Enzymes Activity of Larch Plantation in Northeast China

Author:

Sun Xudong12,Sun Hailong2ORCID,Chen Juan1,Gao Guoqiang1,Li Rui1,Li Jinfang1,Li Yang1,Sun Xiaoyang23,Zhang Yandong2

Affiliation:

1. Engineering Research Center of Chuanxibei RHS Construction at Mianyang Teachers’ College of Sichuan Province, Mianyang Teachers’ College, Mianyang 621010, China

2. School of Forestry, Northeast Forestry University, Hexing Rd. 26, Harbin 150040, China

3. Forestry Inventory and Planning Institute of Jilin Province, Changchun 130022, China

Abstract

Soil is the largest carbon (C) pool in terrestrial ecosystems. A small change of soil organic carbon (SOC) storage may have a substantial effect on the CO2 concentration in the atmosphere, potentially leading to global climate change. Forest stand density has been reported to influence SOC storage, yet the effects are often inconsistent. In order to reveal the mechanisms of effect of stand density on SOC storage, larch plantations with three different stand densities (which were 2000, 3300 and 4400 trees per hectare) were chosen. Soil properties were measured in three soil layers which are: 0–20 cm, 20–40 cm and 40–60 cm. An incubation experiment with 14C-labeled cellulose addition was subsequently conducted to study the decomposition of SOC and cellulose, as well as the enzymes activity involved in C and nutrients cycle. The results showed that SOC storage increased with increasing stand density in larch plantations, which was due to the higher C stored in heavy fraction instead of light fraction in higher density. The decomposition of added cellulose decreased with increasing stand density in each soil layer, as well as the cumulative soil derived CO2 emission rate. The activity of enzymes involved in C-cycle and C- and nitrogen (N)-cycle remained unaffected by stand density in the 0–20 cm and 20–40 cm layers. The enzyme activity involved in the phosphorus (P)-cycle did not change corresponding to the stand density in each soil layer. Enzymes involved in the N-cycle showed the highest activity in the middle stand density in 0–20 cm, but no difference was observed among different densities in the subsurface layer except for tyr in the 40–60 cm layer, which showed the lowest activity in high stand density. Cellulose addition stimulated the extracellular enzymes activity involved in the C-cycle and P-cycle in the 0–20 cm layer, and the stimulation declined with increasing stand density. However, significant stimulation of cellulose addition to C-cycle involved enzymes activity was not found in the subsurface layer. We aim to reveal the mechanism of effects of stand density of larch plantations on SOC storage by focusing on the cellulose and SOC decomposition and the corresponding extracellular enzymes activity. In the plots of higher stand density, larch plantations may lead to a weaker C output and stronger C input, which leads to the higher SOC storage.

Funder

Sichuan Science and Technology Program

National Key R&D Program of China

Research Initiation Project of Mianyang Teachers’ College

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3