Fault Diagnosis for Abnormal Wear of Rolling Element Bearing Fusing Oil Debris Monitoring

Author:

Zhao Yulai1,Wang Xiaowei1,Han Shuo1,Lin Junzhe1ORCID,Han Qingkai12

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

2. Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China

Abstract

The abnormal wear of a rolling element bearing caused by early failures, such as pitting and spalling, will deteriorate the running state and reduce the life. This paper demonstrates the importance of oil debris monitoring and its effective feature extraction for bearing health assessment. In this paper, a rolling bearing-rotor test rig with forced lubrication is set up and the nonferrous contaminants with higher hardness were introduced artificially to accelerate the occurrence of pitting and spalling. The early failure and abnormal wear of rolling bearings cannot be effectively detected only through the vibration signal; the temperature and oil debris monitoring data are also collected synchronously. Two features regarding the ferrous particle size distribution are extracted and fused with vibration based-features to form a feature set. The sensitive features are extracted from the features set using the Neighborhood Component Analysis method to avoid feature redundancy. Finally, the importance of the oil debris based-features for the diagnosis of abnormal bearing wear is analyzed with different machine learning algorithms. Taking SVM classifier as an example, the experiment results show that the introduction of oil debris based-features increases the diagnostic accuracy by 15.7%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3