On Escherichia coli Resistance to Fluid Shear Stress and Its Significance for Water Disinfection

Author:

Vettori Davide,Manes Costantino,Dalmazzo DavideORCID,Ridolfi Luca

Abstract

Alternative water treatment techniques are needed to overcome the limitations of chemical disinfectants. Stemming from recent findings which point to high levels of shear stress induced by flow as the cause of microbial removal in water, we conducted systematic experiments on bacterial solutions in well-controlled hydrodynamic conditions to evaluate the effect of different levels of shear stress on the viability of Escherichia coli. We investigated a wide range of shear stresses (57–4240 Pa) using viscous substrates prepared by mixing a bacterial solution with thickeners (2-hydroxyethyl cellulose and/or guar gum). Substrate samples were tested for up to 60 min in a laminar shear flow at a constant temperature using a rotational rheometer equipped with a cone-plate measuring system so that the whole sampling volume was exposed to the same shear stress. Results show that, contrary to previous studies, high shear stresses (i.e., of order 103 Pa) do not induce inactivation or lysis of E. coli, even for prolonged exposure times. Stemming from our results and a thorough discussion of the literature on E. coli mechanical lysis and modeling cell dynamics, we infer that E. coli can resist high shear forces because of stress relaxation in a wide range of hydrodynamic conditions.

Funder

European Union

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference61 articles.

1. Handbook of Chlorination and Alternative Disinfectants;White,2010

2. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities

3. Directive (EU) 2020/2184 of The European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast);Off. J. Eur. Union,2020

4. U.S. Environmental Protection Agency National Primary Drinking Water Regulations

5. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and Sdg Baselines;World Health Organization,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3