Observations of Nearbed Turbulence over Mobile Bedforms in Combined, Collinear Wave-Current Flows

Author:

Kassem Hachem,Thompson Charlotte E. L.,Amos Carl L.,Townend Ian H.ORCID,Todd David,Whitehouse Richard J. S.ORCID,Chellew Elizabeth

Abstract

Collinear wave-current shear interactions are often assumed to be the same for currents following or opposing the direction of regular wave propagation; with momentum and mass exchanges restricted to the thin oscillating boundary layer (zero-flux condition) and enhanced but equal wave-averaged bed shear stresses. To examine these assumptions, a prototype-scale experiment investigated the nature of turbulent exchanges in flows with currents aligned to, and opposing, wave propagation over a mobile sandy bed. Estimated mean and maximum stresses from measurements above the bed exceeded predictions by models of bed shear stress subscribing to the assumptions above, suggesting the combined boundary layer is larger than predicted by theory. The core flow experiences upward turbulent fluxes in aligned flows, coupled with sediment entrainment by vortex shedding at flow reversal, whilst downward fluxes of eddies generated by the core flow, and strong adverse shear can enhance near-bed mass transport, in opposing currents. Current-aligned coherent structures contribute significantly to the stress and energy dissipation, and display characteristics of wall-attached eddies formed by the pairing of counter-rotating vortices. These preliminary findings suggest a notable difference in wave-following and wave-opposing wave-current interactions, and highlight the need to account for intermittent momentum-exchanges in predicting stress, boundary layer thickness and sediment transport.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference90 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3