A Double-Electrode-Layer Wind-Driven Triboelectric Nanogenerator with Low Frictional Resistance and High Mechanical Energy Conversion Efficiency of 10.3%

Author:

Fang Dongyang1,Gu Guangqin1,Zhang Wenhe1,Gu Guangxiang1,Wang Cong1,Zhang Bao1,Cheng Gang1,Du Zuliang1

Affiliation:

1. Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China

Abstract

As a new technology for harvesting distributed energy, the triboelectric nanogenerator (TENG) has been widely used in harvesting wind energy. However, the wind-driven TENG (WD-TENG) faces the problems of high frictional resistance and low mechanical energy conversion efficiency. Here, based on optimizing the structure of the wind turbine, a rotational double-electrode-layer WD-TENG (DEL-WD-TENG) is developed. When the rotational speed is less than 400 round per minute (rpm), the dielectric triboelectric layer rubs with the inner electrode layer under its gravity; when the rotational speed is higher than 400 rpm, the dielectric triboelectric layer rubs with the outer electrode layer under the centrifugal force. The double-electrode-layer structure avoids the energy loss caused by other forces except gravity, centrifugal, and electrostatic adsorption, which improves the mechanical energy conversion efficiency and prolongs the working life of the DEL-WD-TENG. The conversion efficiency from mechanical energy to electricity of the DEL-WD-TENG can reach 10.3%. After 7 million cycles, the transferred charge of the DEL-WD-TENG is reduced by about 5.0%, and the mass loss of dielectric triboelectric layer is only 5.6%. The DEL-WD-TENG with low frictional resistance and high energy conversion efficiency has important application prospects in wind energy harvesting and self-powered sensing systems.

Funder

National Natural Science Foundation of China

Key Research & Development and Promotion Project of Henan Province

Publisher

MDPI AG

Subject

General Medicine

Reference36 articles.

1. Global Wind Energy Council;Dyrholm;Sao Paulo Braz. Glob. Wind. Rep.,2023

2. Wind power generation: A review and a research agenda;Vargas;J. Cleaner Prod.,2019

3. Flexible triboelectric generator;Fan;Nano Energy,2012

4. Strategies for effectively harvesting wind energy based on triboelectric nanogenerators;Ren;Nano Energy,2022

5. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy;Wang;ACS Nano,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3