Hydrogel-Based Energy Harvesters and Self-Powered Sensors for Wearable Applications

Author:

Wang Zhaosu1,Li Ning1,Zhang Zhiyi2,Cui Xiaojing3,Zhang Hulin1

Affiliation:

1. College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China

Abstract

Collecting ambient energy to power various wearable electronics is considered a prospective approach to addressing their energy consumption. Mechanical and thermal energies are abundantly available in the environment and can be efficiently converted into electricity based on different physical effects. Hydrogel-based energy harvesters have turned out to be a promising solution, owing to their unique properties including flexibility and biocompatibility. In this review, we provide a concise overview of the methods and achievements in hydrogel-based energy harvesters, including triboelectric nanogenerators, piezoelectric nanogenerators, and thermoelectric generators, demonstrating their applications in power generation, such as LED lighting and capacitor charging. Furthermore, we specifically focus on their applications in self-powered wearables, such as detecting human motion/respiration states, monitoring joint flexion, promoting wound healing, and recording temperature. In addition, we discuss the progress in the sensing applications of hydrogel-based self-powered electronics by hybridizing multiple energy conversion in the field of wearables. This review analyzes hydrogel-based energy harvesters and their applications in self-powered sensing for wearable devices, with the aim of stimulating ongoing advancements in the field of smart sensors and intelligent electronics.

Funder

Natural Science Foundation of Shanxi Province

Special Project of Science and Technology Cooperation and Exchange of Shanxi Province

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3