Abstract
Vascular Access (VA) is often referred to as the “Achilles heel” for a Hemodialysis (HD)-dependent patient. Both the patent and sufficient VA provide adequacy for performing dialysis and reducing dialysis-related complications, while on the contrary, insufficient VA is the main reason for recurrent hospitalizations, high morbidity, and high mortality in HD patients. A non-invasive Vascular Wall Motion (VWM) monitoring system, made up of a pulse radar sensor and Support Vector Machine (SVM) classification algorithm, has been developed to detect access flow dysfunction in Arteriovenous Fistula (AVF). The harmonic ratios derived from the Fast Fourier Transform (FFT) spectrum-based signal processing technique were employed as the input features for the SVM classifier. The result of a pilot clinical trial showed that a more accurate prediction of AVF flow dysfunction could be achieved by the VWM monitor as compared with the Ultrasound Dilution (UD) flow monitor. Receiver Operating Characteristic (ROC) curve analysis showed that the SVM classification algorithm achieved a detection specificity of 100% at detection thresholds in the range from 500 to 750 mL/min and a maximum sensitivity of 95.2% at a detection threshold of 750 mL/min.
Funder
Taichung Veterans General Hospital and Taichung Veterans General Hospital, Chiayi Branch
Subject
Clinical Biochemistry,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献