Arteriovenous Fistula Flow Dysfunction Surveillance: Early Detection Using Pulse Radar Sensor and Machine Learning Classification

Author:

Chen Cheng-HsuORCID,Tao Teh-Ho,Chou Yi-Hua,Chuang Ya-Wen,Chen Tai-BeenORCID

Abstract

Vascular Access (VA) is often referred to as the “Achilles heel” for a Hemodialysis (HD)-dependent patient. Both the patent and sufficient VA provide adequacy for performing dialysis and reducing dialysis-related complications, while on the contrary, insufficient VA is the main reason for recurrent hospitalizations, high morbidity, and high mortality in HD patients. A non-invasive Vascular Wall Motion (VWM) monitoring system, made up of a pulse radar sensor and Support Vector Machine (SVM) classification algorithm, has been developed to detect access flow dysfunction in Arteriovenous Fistula (AVF). The harmonic ratios derived from the Fast Fourier Transform (FFT) spectrum-based signal processing technique were employed as the input features for the SVM classifier. The result of a pilot clinical trial showed that a more accurate prediction of AVF flow dysfunction could be achieved by the VWM monitor as compared with the Ultrasound Dilution (UD) flow monitor. Receiver Operating Characteristic (ROC) curve analysis showed that the SVM classification algorithm achieved a detection specificity of 100% at detection thresholds in the range from 500 to 750 mL/min and a maximum sensitivity of 95.2% at a detection threshold of 750 mL/min.

Funder

Taichung Veterans General Hospital and Taichung Veterans General Hospital, Chiayi Branch

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3