Abstract
The optimization of multiple factors for gasification performance using a 3D CFD model with advanced sub-models for single-stage drop tube coal gasification was compared with experimental results. A single-stage down-drop gasifier with multiple coal injectors and a single oxygen injector at the top of the gasifier was investigated at different temperatures and O2/coal ratios. A finite rate/eddy dissipation (FR/ED) model was employed to define the chemical reactions. Kinetic data for the various reactions were taken from previous work. The realizable k–ε turbulent model and Euler–Lagrangian framework were adopted to solve the turbulence equations and solid–gas interaction. First, various preliminary reactions were simulated to validate the reaction model with experimental data. Furthermore, various cases were simulated at various O/C ratios and wall temperatures to analyze the syngas species, temperature profile in the whole gasifier, exit temperature, carbon conversion, turbulent intensity, and velocity profile. The maximum CO was found to be 75.06% with an oxygen/coal ratio of 0.9 at 1800 °C. The minimum and maximum carbon conversions were found to be 97.5% and 99.8% at O/C 0.9 at 1200 °C and O/C 1.1 at 1800 °C, respectively.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献