Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types

Author:

Shaqour AyasORCID,Hagishima AyaORCID

Abstract

Owing to the high energy demand of buildings, which accounted for 36% of the global share in 2020, they are one of the core targets for energy-efficiency research and regulations. Hence, coupled with the increasing complexity of decentralized power grids and high renewable energy penetration, the inception of smart buildings is becoming increasingly urgent. Data-driven building energy management systems (BEMS) based on deep reinforcement learning (DRL) have attracted significant research interest, particularly in recent years, primarily owing to their ability to overcome many of the challenges faced by conventional control methods related to real-time building modelling, multi-objective optimization, and the generalization of BEMS for efficient wide deployment. A PRISMA-based systematic assessment of a large database of 470 papers was conducted to review recent advancements in DRL-based BEMS for different building types, their research directions, and knowledge gaps. Five building types were identified: residential, offices, educational, data centres, and other commercial buildings. Their comparative analysis was conducted based on the types of appliances and systems controlled by the BEMS, renewable energy integration, DR, and unique system objectives other than energy, such as cost, and comfort. Moreover, it is worth considering that only approximately 11% of the recent research considers real system implementations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3