Prediction of Carbon Dioxide Emissions in China Using Shallow Learning with Cross Validation

Author:

Hou Yali,Wang Qunwei,Tan Tao

Abstract

Accurately measuring carbon dioxide (CO2) emissions is critical for effectively implementing carbon reduction policies, and China’s increased investment in reducing CO2 emissions is expected to significantly impact the world. In this study, the potential of shallow learning for predicting CO2 emissions was explored. Data included CO2 emissions, renewable energy consumption, and the share of primary, secondary, and tertiary industries in China from 1965 to 2021. These time-series data were converted into labeled sample data using the sliding window method to facilitate a supervised learning model for CO2 emission prediction. Then, different shallow learning models with k-fold cross-validation were used to predict China’s short-term CO2 emissions. Finally, optimal models were presented, and the important features were identified. The key findings were as follows. (1) The combined model of RF and LASSO performed best at predicting China’s short-term CO2 emissions, followed by LASSO and SVR. The prediction performance of RF was very fragile to the window width. (2) The sliding window method is used to convert time series predictions into supervision learning problems, and historical data can be used to predict future carbon dioxide emissions. To ensure that the feature data are real, the model can predict CO2 emissions for up to six years ahead. (3) Cross-validation and grid search were critical for optimizing China’s CO2 emissions prediction with small datasets. (4) By 2027, carbon dioxide emissions will continue to grow and reach 10.3 billion tons. It can be seen that the task of China to achieve its carbon peak on schedule is very heavy. The results indicate that an increase in renewable energy consumption and adjustments in industrial structure will continue to play an important role in curbing China’s CO2 emissions.

Funder

Guidance Foundation, the Sanya Institute of Nanjing Agricultural University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., and Fradera, R. (2022). Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Share green growth: Regional evaluation of green output performance in China;Int. J. Prod. Econ.,2020

3. Using LMDI method to analyze transport sector CO2 emissions in China;Energy,2011

4. A top-bottom method for city-scale energy-related CO2 emissions estimation: A case study of 41 Chinese cities;J. Clean. Prod.,2018

5. Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis?—Empirical analysis based on the PSM-DID method;Energy Policy,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3