Potential Application of Canola Hull Fuel Pellets for the Production of Synthesis Gas and Hydrogen

Author:

Azargohar Ramin,Nanda SonilORCID,Cheng He,Dalai Ajay K.

Abstract

The production of biopellets from agricultural residues is an effective method to overcome the expected shortage in the supply of fuel pellets in the future. This work focused on the new potential applications of fuel pellets to produce liquid and gas fuels through thermochemical and hydrothermal biomass-to-gas technologies. The outcomes also provide a basis to compare the effects of steam and hydrothermal gasification techniques on the properties of product and byproduct, as well as their potentials. For steam gasification, the syngas yield increased from 10.7 to 27.8 mmol/g (on a dry and ash-free basis) by a rise in the gasification temperature at a constant steam-to-biomass ratio. In the case of hydrothermal gasification, there was no carbon monoxide, and hydrogen was the main gas product, and with an increase in the temperature, the hydrogen yield rose from 0.4 mmol/g to 3.17 mmol/g with temperatures from 350 to 650 °C. CO had the largest share in the gas product from steam gasification, which was between 23.3 and 31.3 mol%. The range of the molar ratio of H2/CO for the steam gasification (1.13–1.40) showed the necessity of the further purification of gas products to utilize them as feed for liquid fuel production using the Fischer–Tropsch process. Examination of the mineral content of biochar that remained after the gasification techniques showed large essential elements in them compared with heavy metals, which shows potential for soil amendment. The results highlight the possibility of converting an agricultural residue into a value-added product with potential applications in the energy sector and agriculture.

Funder

Agriculture Development Fund

Ministry of Agriculture

BioFuelNet Canada

Natural Sciences and Engineering Research Council (NSERC) of Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference51 articles.

1. (2022, October 13). World Bioenergy Association. Available online: https://www.worldbioenergy.org/uploads/201210%20WBA%20GBS%202020.pdf.

2. (2022, February 23). Canola Council of Canada. Available online: https://www.canolacouncil.org/markets-stats/production/.

3. Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets;Renew. Energy,2019

4. Structure and thermal properties of tar from gasification of agricultural crop residue;J. Therm. Anal. Calorim.,2015

5. Basu, P. (2010). Pyrolysis and Torrefaction: Practical Design and Theory, Academic Press. [3rd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3