Abstract
It is economical and efficient to use existing natural gas pipelines to transport hydrogen. The fast and accurate prediction of mixing uniformity of hydrogen injection in natural gas pipelines is important for the safety of pipeline transportation and downstream end users. In this study, the computational fluid dynamics (CFD) method was used to investigate the hydrogen injection process in a T-junction natural gas pipeline. The coefficient of variation (COV) of a hydrogen concentration on a pipeline cross section was used to quantitatively characterize the mixing uniformity of hydrogen and natural gas. To quickly and accurately predict the COV, a deep neural network (DNN) model was constructed based on CFD simulation data, and the main influencing factors of the COV including flow velocity, hydrogen blending ratio, gas temperature, flow distance, and pipeline diameter ratio were taken as input nodes of the DNN model. In the model training process, the effects of various parameters on the prediction accuracy of the DNN model were studied, and an accurate DNN architecture was constructed with an average error of 4.53% for predicting the COV. The computational efficiency of the established DNN model was also at least two orders of magnitude faster than that of the CFD simulations for predicting the COV.
Funder
the National Key R&D Program of China
the Undergraduate Research Training Program of Beijing Municipality
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference36 articles.
1. Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network;Int. J. Hydrogen Energ.,2022
2. Effect of different parameters on hydrogen affected fatigue failure in pipeline steels;Eng. Fail. Anal.,2022
3. Structural integrity assessment of hydrogen-mixed natural gas pipelines based on a new multi-parameter failure criterion;Ocean Eng.,2022
4. Research progresses on pipeline transportation of hydrogen-blended natural gas;Nat. Gas Ind.,2021
5. Influences of Hydrogen Blending on the Joule–Thomson Coefficient of Natural Gas;ACS Omega,2021
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献