Prediction of Mixing Uniformity of Hydrogen Injection inNatural Gas Pipeline Based on a Deep Learning Model

Author:

Su Yue,Li JingfaORCID,Guo Wangyi,Zhao Yanlin,Li Jianli,Zhao Jie,Wang Yusheng

Abstract

It is economical and efficient to use existing natural gas pipelines to transport hydrogen. The fast and accurate prediction of mixing uniformity of hydrogen injection in natural gas pipelines is important for the safety of pipeline transportation and downstream end users. In this study, the computational fluid dynamics (CFD) method was used to investigate the hydrogen injection process in a T-junction natural gas pipeline. The coefficient of variation (COV) of a hydrogen concentration on a pipeline cross section was used to quantitatively characterize the mixing uniformity of hydrogen and natural gas. To quickly and accurately predict the COV, a deep neural network (DNN) model was constructed based on CFD simulation data, and the main influencing factors of the COV including flow velocity, hydrogen blending ratio, gas temperature, flow distance, and pipeline diameter ratio were taken as input nodes of the DNN model. In the model training process, the effects of various parameters on the prediction accuracy of the DNN model were studied, and an accurate DNN architecture was constructed with an average error of 4.53% for predicting the COV. The computational efficiency of the established DNN model was also at least two orders of magnitude faster than that of the CFD simulations for predicting the COV.

Funder

the National Key R&D Program of China

the Undergraduate Research Training Program of Beijing Municipality

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network;Int. J. Hydrogen Energ.,2022

2. Effect of different parameters on hydrogen affected fatigue failure in pipeline steels;Eng. Fail. Anal.,2022

3. Structural integrity assessment of hydrogen-mixed natural gas pipelines based on a new multi-parameter failure criterion;Ocean Eng.,2022

4. Research progresses on pipeline transportation of hydrogen-blended natural gas;Nat. Gas Ind.,2021

5. Influences of Hydrogen Blending on the Joule–Thomson Coefficient of Natural Gas;ACS Omega,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3