Conversion of Biomass to Chemicals via Electrofermentation of Lactic Acid Bacteria

Author:

Winder Johanna C.ORCID,Hewlett Mark,Liu Ping,Love JohnORCID

Abstract

Microbial electrosynthesis is the process of supplying electrons to microorganisms to reduce CO2 and yield industrially relevant products. Such systems are limited by their requirement for high currents, resulting in challenges to cell survival. Electrofermentation is an electron-efficient form of microbial electrosynthesis in which a small cathodic or anodic current is provided to a culture to alter the oxidation–reduction potential of the medium and, in turn, alter microbial metabolism. This approach has been successfully utilised to increase yields of diverse products including biogas, butanediol and lactate. Biomass conversion to lactate is frequently facilitated by ensiling plant biomass with homofermentative lactic acid bacteria. Although most commonly used as a preservative in ensiled animal feed, lactate has diverse industrial applications as a precursor for the production of probiotics, biofuels, bioplastics and platform chemicals. Lactate yields by lactic acid bacteria (LAB) are constrained by a number of redox limitations which must be overcome while maintaining profitability and sustainability. To date, electrofermentation has not been scaled past laboratory- or pilot-stage reactions. The increasing ease of genetic modification in a wide range of LAB species may prove key to overcoming some of the pitfalls of electrofermentation at commercial scale. This review explores the history of electrofermentation as a tool for controlling redox balance within bacterial biocatalysts, and the potential for electrofermentation to increase lactate production from low-value plant biomass.

Funder

Shell Research Ltd.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference86 articles.

1. Microbial Fuel Cells:  Methodology and Technology;Environ. Sci. Technol.,2006

2. Knight, C., Cavanagh, K., Munnings, C., Moore, T., Cheng, K.Y., and Kaksonen, A.H. (2013). Wireless Sensor Networks and Ecological Monitoring, Springer.

3. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): Maximizing chemical oxygen demand (COD) removal from wastewater;Biofouling,2011

4. Phosphorus, chemical base and other renewables from wastewater with three 168-L microbial electrolysis cells and other unit operations;Chem. Eng. J.,2020

5. Stretched 1000-L microbial fuel cell;J. Power Sources,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3