Comparative Study of Wind Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa)

Author:

Sedzro Kwami Senam A.ORCID,Salami Adekunlé Akim,Agbessi Pierre Akuété,Kodjo Mawugno Koffi

Abstract

The characterization of wind speed distribution and the optimal assessment of wind energy potential are critical factors in selecting a suitable site for wind power plants (WPP). The Weibull distribution law has been used extensively to analyze the wind characteristics of candidate WPP sites, and to estimate the available and deliverable energy. This paper presents a comparative study of five wind energy resource assessment methods as they applied to the context of wind sites in West Sub-Saharan Africa. We investigated three numerical approaches, namely, the adaptive neuro-fuzzy inference system (ANFIS), the multilayer perceptron method (MLP), and support vector regression (SVR), to derive the distribution law of wind speeds and to optimally quantify the corresponding wind energy potential. Next, we compared these three approaches to two well-known Weibull distribution law-based methods: the empirical method of Justus (EMJ) and the maximum likelihood method (MLM). Case study results indicated that the neural network-based methods, ANFIS and MLP, yielded the most accurate distribution fits and wind energy potential estimates, and consequently, are the most recommended methods for the wind sites in Togo and Benin. The orders of magnitude of the root mean squared error (RMSE) in estimating the recoverable energy using ANFIS were, respectively, 10-4 and 10-5 for Lomé and Cotonou, while MLP achieved an RMSE order of magnitude of 10-3 for both sites.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference99 articles.

1. Energy Information Administration, Office of Integrated Analysis and Forecasting, and U.S. Department of Energy (2021, August 15). Report #DOE/EIA-0484(2003). November 2003, Washington, DC 20585, May 2003, Available online: www.eia.doe.gov/oiaf/ieo/download.html.

2. World Data (2021, August 10). Energy Consumption in Benin. Available online: https://www.worlddata.info/africa/benin/energy-consumption.php.

3. World Data (2021, August 10). Energy Consumption in Togo. Available online: https://www.worlddata.info/africa/togo/energy-consumption.php.

4. World Data (2021, August 13). Energy Consumption in the United States of America. Available online: https://www.worlddata.info/america/usa/energy-consumption.php.

5. International Renewable Energy Agency (2018). Planning and Prospects for Renewable Power: West Africa. 2018 Report, International Renewable Energy Agency.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3