Abstract
Heart failure (HF) is an acute or chronic clinical syndrome that results in a decrease in cardiac output and an increase in intracardiac pressure at rest or upon exertion. The pathophysiology of HF is heterogeneous and results from an initial harmful event in the heart that promotes neurohormonal changes such as autonomic dysfunction and activation of the renin-angiotensin-aldosterone system, endothelial dysfunction, and inflammation. Cardiac remodeling occurs, which is associated with degradation and disorganized synthesis of extracellular matrix (ECM) components that are controlled by ECM metalloproteinases (MMPs). MMP-2 is part of this group of proteases, which are classified as gelatinases and are constituents of the heart. MMP-2 is considered a biomarker of patients with HF with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF). The role of MMP-2 in the development of cardiac injury and dysfunction has clearly been demonstrated in animal models of cardiac ischemia, transgenic models that overexpress MMP-2, and knockout models for this protease. New research to minimize cardiac structural and functional alterations using non-selective and selective inhibitors for MMP-2 demonstrates that this protease could be used as a possible pharmacological target in the treatment of HF.
Funder
São Paulo Research Foundation
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献