Recognition of Occluded Goods under Prior Inference Based on Generative Adversarial Network

Author:

Cao Mingxuan12ORCID,Xie Kai123,Liu Feng12,Li Bohao12,Wen Chang34ORCID,He Jianbiao5,Zhang Wei5

Affiliation:

1. School of Electronic and Information, Yangtze University, Jingzhou 434023, China

2. National Electrical and Electronic Experimental Teaching Demonstration Center, Yangtze University, Jingzhou 434023, China

3. Western Research Institute, Yangtze University, Karamay 834000, China

4. School of Computer Science, Yangtze University, Jingzhou 434023, China

5. School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract

Aiming at the recognition of intelligent retail dynamic visual container goods, two problems that lead to low recognition accuracy must be addressed; one is the lack of goods features caused by the occlusion of the hand, and the other is the high similarity of goods. Therefore, this study proposes an approach for occluding goods recognition based on a generative adversarial network combined with prior inference to address the two abovementioned problems. With DarkNet53 as the backbone network, semantic segmentation is used to locate the occluded part in the feature extraction network, and simultaneously, the YOLOX decoupling head is used to obtain the detection frame. Subsequently, a generative adversarial network under prior inference is used to restore and expand the features of the occluded parts, and a multi-scale spatial attention and effective channel attention weighted attention mechanism module is proposed to select fine-grained features of goods. Finally, a metric learning method based on von Mises–Fisher distribution is proposed to increase the class spacing of features to achieve the effect of feature distinction, whilst the distinguished features are utilized to recognize goods at a fine-grained level. The experimental data used in this study were all obtained from the self-made smart retail container dataset, which contains a total of 12 types of goods used for recognition and includes four couples of similar goods. Experimental results reveal that the peak signal-to-noise ratio and structural similarity under improved prior inference are 0.7743 and 0.0183 higher than those of the other models, respectively. Compared with other optimal models, mAP improves the recognition accuracy by 1.2% and the recognition accuracy by 2.82%. This study solves two problems: one is the occlusion caused by hands, and the other is the high similarity of goods, thus meeting the requirements of commodity recognition accuracy in the field of intelligent retail and exhibiting good application prospects.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Undergraduate Training Programs for Innovation and Entrepreneurship of Yangtze University

Teaching Research Fund of Yangtze University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3