Deep Reinforcement Learning-Assisted Optimization for Resource Allocation in Downlink OFDMA Cooperative Systems

Author:

Tefera Mulugeta Kassaw1ORCID,Zhang Shengbing1,Jin Zengwang1ORCID

Affiliation:

1. School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

This paper considers a downlink resource-allocation problem in distributed interference orthogonal frequency-division multiple access (OFDMA) systems under maximal power constraints. As the upcoming fifth-generation (5G) wireless networks are increasingly complex and heterogeneous, it is challenging for resource allocation tasks to optimize the system performance metrics and guarantee user service requests simultaneously. Because of the non-convex optimization problems, using existing approaches to find the optimal resource allocation is computationally expensive. Recently, model-free reinforcement learning (RL) techniques have become alternative approaches in wireless networks to solve non-convex and NP-hard optimization problems. In this paper, we study a deep Q-learning (DQL)-based approach to address the optimization of transmit power control for users in multi-cell interference networks. In particular, we have applied a DQL algorithm for resource allocation to maximize the overall system throughput subject to the maximum power and SINR constraints in a flat frequency channel. We first formulate the optimization problem as a non-cooperative game model, where the multiple BSs compete for spectral efficiencies by improving their achievable utility functions while ensuring the quality of service (QoS) requirements to the corresponding receivers. Then, we develop a DRL-based resource allocation model to maximize the system throughput while satisfying the power and spectral efficiency requirements. In this setting, we define the state-action spaces and the reward function to explore the possible actions and learning outcomes. The numerical simulations demonstrate that the proposed DQL-based scheme outperforms the traditional model-based solution.

Funder

National Natural Science Foundation of China

Priority Northwestern Polytechnical University (NWPU) and School of Cybersecurity

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3