Probabilistic Forecasting of Wind Turbine Icing Related Production Losses Using Quantile Regression Forests

Author:

Molinder JennieORCID,Scher SebastianORCID,Nilsson ErikORCID,Körnich HeinerORCID,Bergström HansORCID,Sjöblom AnnaORCID

Abstract

A probabilistic machine learning method is applied to icing related production loss forecasts for wind energy in cold climates. The employed method, called quantile regression forests, is based on the random forest regression algorithm. Based on the performed tests on data from four Swedish wind parks available for two winter seasons, it has been shown to produce valuable probabilistic forecasts. Even with the limited amount of training and test data that were used in the study, the estimated forecast uncertainty adds more value to the forecast when compared to a deterministic forecast and a previously published probabilistic forecast method. It is also shown that the output from a physical icing model provides useful information to the machine learning method, as its usage results in an increased forecast skill when compared to only using Numerical Weather Prediction data. A potential additional benefit in machine learning for some stations was also found when using information in the training from other stations that are also affected by icing. This increases the amount of data, which is otherwise a challenge when developing forecasting methods for wind energy in cold climates.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. IEA Wind Task 19, “Emerging from the Cold” https://www.windpowermonthly.com/article/1403504/emerging-cold

2. Phases of icing on wind turbine blades characterized by ice accumulation

3. IEA Wind TCP Task 19, Available Technologies for Wind Energy in Cold Climates Report. Technical Report https://community.ieawind.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=6697b7bd-b175-12b0-ecbf-2558c35d309b&forceDialog=0

4. Probabilistic forecasting of wind power production losses in cold climates: a case study

5. Identifying and characterizing the impact of turbine icing on wind farm power generation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3