Physicochemical Study on the Strength Development Characteristics of Cold Weather Concrete Using a Nitrite–Nitrate Based Accelerator

Author:

Choi HeesupORCID,Inoue Masumi,Choi Hyeonggil,Kim Jihoon,Sudoh Yuhji,Kwon Sukmin,Lee Bokyeong,Yoneyama Akira

Abstract

There has recently been an increased use of anti-freezing agents that are primarily composed of salt- and alkali-free calcium nitrite (Ca(NO2)2) and calcium nitrate (Ca(NO3)2) to promote the hydration reaction of concrete in cold weather concreting. Nitrite–nitrate based accelerators accelerate the hydration of C3A and C3S in cement more quickly when their quantities are increased, thereby boosting the concrete’s early strength and effectively preventing early frost damage. However, the connection between the hydrate formation behavior and the strength development characteristic over time has yet to be clearly identified. Therefore, in this study, a wide range of physicochemical reviews were carried out to clarify the relationship between the hydrate formation behavior and the strength development characteristics, both at an early age and at later ages, which results from the addition of nitrite–nitrate based accelerators to concrete in varying amounts. These accelerators also act as anti-freezing agents. The results show that an increased quantity of nitrite–nitrate based accelerators caused an increase in the early strength of the concrete. This was due to the formation of nitrite and nitrate hydrates in large amounts, in addition to ettringite containing SO42, which is generated during the hydration reaction of normal Portland cement at an early age. On the other hand, at later ages, there was a rise in nitrite and nitrate hydrates with needle crystal structures exhibiting brittle fracture behavior. A decrease in C–S–H gel and Ca(OH)2 hydrates, deemed to have caused a decline in strength on Day 3 and thereafter, was also observed.

Publisher

MDPI AG

Subject

General Materials Science

Reference23 articles.

1. Fresh properties and early strength development of concrete using calcium nitrite and water-reducing agents;Akama;Proc. Jap. Concr. Inst.,2012

2. Recommendation for Practice of Cold Weather Concreting,2010

3. Cold Weather Concreting with Hydronic Heaters;Grochoski;J. Am. Concr. Inst. ACI,2000

4. Cold-Weather Concreting, ACI 306R-88,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3