Wear Resistant Coatings with a High Friction Coefficient Produced by Plasma Electrolytic Oxidation of Al Alloys in Electrolytes with Basalt Mineral Powder Additions

Author:

Terleeva Olga P.,Slonova Aleksandra I.,Rogov Aleksey B.ORCID,Matthews Allan,Yerokhin Aleksey

Abstract

To achieve a better performance of engineering components, modern design approaches consider the replacement of steel with lightweight metals, such as aluminum alloys. However, bare aluminum cannot satisfy requirements for surface properties in situations where continuous friction is needed. Among the various surface modification techniques, plasma electrolytic oxidation (PEO) is considered as promising for structural applications, owing to its hard and well-adhered ceramic coatings. In this work, the surfaces of two Al alloys (2024 and 6061) have been modified by PEO coating (~180 µm) reinforced with basalt minerals, in order to increase the coefficient of friction and wear resistance. A slurry electrolyte, including a silicate-alkaline solution with addition of basalt mineral powder (<5 µm) has been used. The coating composition, surface morphology, and microstructure were studied using X-ray diffraction, scanning electron, and optical microscopy. Linear reciprocating wear tests were employed for the evaluation of the friction and wear behavior. It was found that the coatings reinforced with basalt mineral showed that the wear and friction coefficients reached values 10−6–10−7 (mm3 N−1 m−1) and 0.7–0.85, correspondingly (sliding distance of 100 m). In comparison with the characteristics of resin-based materials (10−5–10−4 (mm3 N−1 m−1) and 0.3–0.5, respectively), the employment of thin inorganic frictional composites may bring considerable improvement in the thermal stability, durability, and compactness, as well as a reduction in the weight of the final product. These coatings are considered an alternative to the reinforced resin composite materials on steel used in frictional components, for example, clutch disks and braking pads. It is expected that the smaller thickness of the active frictional material (180 μm) reduces the volume of the wear products, extending the service intervals associated with filter and lubricant maintenance.

Funder

European Research Council

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3