Reciprocal Data Transformations and Their Back-Transforms

Author:

Griffith Daniel A.ORCID

Abstract

Variable transformations have a long and celebrated history in statistics, one that was rather academically glamorous at least until generalized linear models theory eclipsed their nurturing normal curve theory role. Still, today it continues to be a covered topic in introductory mathematical statistics courses, offering worthwhile pedagogic insights to students about certain aspects of traditional and contemporary statistical theory and methodology. Since its inception in the 1930s, it has been plagued by a paucity of adequate back-transformation formulae for inverse/reciprocal functions. A literature search exposes that, to date, the inequality E(1/X) ≤ 1/(E(X), which often has a sizeable gap captured by the inequality part of its relationship, is the solitary contender for solving this problem. After documenting that inverse data transformations are anything but a rare occurrence, this paper proposes an innovative, elegant back-transformation solution based upon the Kummer confluent hypergeometric function of the first kind. This paper also derives formal back-transformation formulae for the Manly transformation, something apparently never done before. Much related future research remains to be undertaken; this paper furnishes numerous clues about what some of these endeavors need to be.

Publisher

MDPI AG

Reference51 articles.

1. Normal curve theory;Lohnes,1968

2. An Analysis of Transformations

3. The Use of Data-Driven Transformations and Their Applicability in Small Area Estimation. Unpublished;Rojas-Perilla;Ph.D. Thesis,2018

4. Continuous Univariate Distributions;Johnson,1994

5. Univariate Discrete Distributions;Johnson,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3